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The problem of motion of a solid body with a fixed point in a uniform field
of gravitational force, &s 1s well known, is reduced to integration of the
following system of equations:

d
A4 "j% = (B —C)gqr 4+ (e213 —ea12) ' | o3 (0.1)
I, (45c)

1 )
2 =T ars (0.2)

where e,, e, and e; are unit vectors directed from the fixed point to the
center of masses of the body, T 1s the product of mass of the body and the
distance between the center of masses and the point of support. The remasin-
ing designations are conventional [1]; symbols (123, ARC, p¢r) designate
cyeclic permutations., For certaln restrictions placed on parameters charac-
terizing the distribution of masses and initiasl conditions, separate parti-
cular solutions of these equations are found.

In recent time varlous generalizations of the indicated problem which are
obtained by complicating of forces acting on the body, are studied inten.
sively. Following Zhukovskii [2],gyroscopic forces are introduced; instead
of a uniform force field a central force field (*) is considered, etc. In this
connection 1t became clear that some of the particular solutions obtained
for problem (0.1), (0.2) do not have "stability" with respect to generaliza-
tions of this kind. In particular, the S.V. Kowalewskli's solution does not
have a corresponding analog there. In connection with this 1t 1s of interest
to show solutions of Equatlons

d
A S = (B—0)(ar — urata) + har —hog + (esTs — es72) T 0.3)
% =TYs— 97s 123, ABC, pgr)

which generalize the corresponding solutions of Equations {(0.,1) and (0.2)
{**), Up to the present time such solutions were found only under the con-
ditlion that at least one of the guantities A2+ 22+ A2 or u 1s equal to

¥} Force function for this case c¢f., for example, in monograph [1].

*##) Solutions gilven in Sections 4 and 5 was presented in the author's paper
sent to PWM Feb.24, 1964. This paper was subsequently combined with the
present paper.
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Zero.

Here five solutions of Equations (0.3) and (0.2) are shown, found under
the condition (A)® -+ A2 + AD)pu == 0. If thils expression is transformed to
zero, the indicated solutions elther reduce to known particular solutions,
or to some generalizations of these solutions.

1. Three integrals of Equations (0.2) and (0.3) are known

Ap? 4 Bg% 4 Cr3-p u2(An2+ Byt + C1s?) — 21 (em1 + efa +eYa) =28 (1.9)
(Ap+hn+ Be+r) 2+ (Crt-Aa)s=k 1.2)

Tt = (1.3}

and, as follows from the theory of the last multiplier, it 1s sufficlent to

find the fourth integral, not explicitly depending on ¢ and contalning an
arbitrary constant, in order to reduce the problem to guadratures.

1. A trivial generalization of Lagrange's solution is obtained for
conditions

B =C, Ay = A3 = 0, eg = €3 = 0
The fourth integral in this case is p = const .

Reduction to quadratures is carried out here by the usual method for
Lagrange's case.
2. PFor conditions er= 0; Ag= Xy= O the following particular solu-
tion exists
do

P=3 g=r=0, =0, Ty = COS Q, Ys=singQ
4 1 2 i i tany = e3/€;)
Aggz—?yW—Qmw+Pm@*m (anx = eg/e;

which is the trivial generalization of the motion of the physical pendulum
applied to the problem under consideration.

3. Motions for which the vector of angular veloecity is not changed
with respect to the body are found by the usual method [3]. Possible axes
of such motion are elements of a cone which ylelds the following curve in
the intersection with the unit sphere (1.3):

[(B — C) &11ars + (C — A) esvary + (A — B) esma7a]* T +
+ [(B — C) MYeTs + (C — A) hast1 + (4 — B) haniYe] [(Aaes — Ase2) 11 + (Aser — Aaes) T3 -+
+ (A1ea — Aze1) Ta] = W1 [(B — C) Mtavs + (€ — 4) hotsma + (4 — B) hsmiTme]?

To each element of this cone corresponds a definite value of angular velo-
city of uniform rotation

e _pB=CO eyt (€ — A) eypen + (A — B) esnis
O =—=LB=C)hmTs + (C — A) raYs11 + (4 — B) ka1 Tz
2, If the body has cavities filled with fluld then the condition
A=B+C @10

can be applicable to changed moments of inertia entering into equation (0.3
[4]. 1In the case of a body which does not have such filling, condition (2.1
1s fulfilled for an infinitely thin plate. In addition ton%2.1) let the
parameters be constrained by the following conditions

e=0, M=0 (BW?+ Cg?)p? = (Bly?+ Cles?) T2

Introducing a new parameter v , the last condition 1s presented in the
form

phoB == (Be, cos 2v -} Cey sin 2v) T, phgC = (Be, sin 2v — Cez cos 2v) T

Under these conditions Equations (0.3) and {0.2) have a solution with
three line integrals
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BAHCyp=p{B — )y, cos2v -+ 5 2.2
g = M {yycos 2v 4 y,; sin 29) + A, / C, ro= (Y Sin 2y — ;008 2v) <k A,/ B
Here s 1s an arbitrary constant.

Introducing (2.2) into integrals (1.1) and (1.2) we arrive at the rela-
tionship
A

. ha »
B ACYS® ~ Bys?) cos 2v + (B + C) 12y 5in 2} + (B + ©) (sm F ot )= A
Here a* is the constant of integration.

It is convenlent to study the found solution in a system of coordinates
which 1s rotated with respect to major axes around the first axis by the
angle v in the direction from the second axis to the third (variables and
parameters which changed upon rotation are designated by primes).

B+ p=p{B —Clvi+sh ¢ =y F s = —uy s (23)
.. B4 2 L, BLC 2

c (72+Ws*> — B <’ra--—2?;§r“ s*) =h—s11 (2.4}

LE ol R S R | (2.5)

Here »n 1is a new arbitrary constant and

2B'Ay’ — Ag (B — C") a2y 2C"hs" — Ay’ (B’ — C") un2y

S == 2 S* =2
E 4B;C1 — (Bl . Cf)gmg 2‘\’ L] 4B'c; — (B; — ce)%s 2\’

Introducing {2.3) into Equation (0.2) which in the new axes has the form

ay . .y

—ﬁ == Py~ §'Ys

where

an ot ot . 2.6
’E‘{“—"*—z}“&’s’s 4 8% — S, Ts (2.6)

Substitution of vy,” and vy,’ found from (2.4) and (2.5) as a function of
vy into this equation permits to establish the dependence of vy, {and along
with this also of the remaining variables) on time. However, in the general
case, for determination of functions y,'(vy) and vy, ’(y,) from {2.%) and
(2.55 i1t 18 necessary to solve the comp!e'ce algedbraic equation of fourth
degree, The problem is simplified If g =0 or T =0, Incase & =0 ,
satisfying Equation (2.4), we express vyp’ and vy,  through a new variable ¢

AR B 4 C .k B
T = ('g“) MGNW% T8 = (‘g’) sinh°'+—§;g%“"8* (2.7
and consequently
B’-“'C' BI__C! h X}‘, Bl+ C! et 4
P=bpIo M=RETC 1—[('@”) oG — g 5| —
h \Y2 B 4-C GFA
~|(5) et 5o [} 8)
, R\ B —C , b\t B —(
7= (7)o — S5 e =) s g

In order to determine the dependence of ¢ on ¢ , it is sufficlent to
substitute (2.7) and (2.8) into (2.6).

The case [ = 0 1is discussed in the following Seection.

3. In the case
T =0 {3.1)
M=A =hg=0 (3.2}
and Equations (0.3) take the form

A4 ‘i—f = (B — C) (gr — 1>7:v9) (128 ABC, par) G

we have
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System (3.3), (0.2) was studied by many authors. Apparently the first
result here belongs to Clebsch [5). Occupying himself with the problem of
motion of a solid body by inertia in a boundless ideal fluid, Clebsch exam-
ined the case when the kinetic energy of the system has the form

OT = Ap? + Bg® + Cr* + LR + MR;2 + NRg

(here &,, h, and R, are components of impulsive force) and consequently
the motion of the boby 1s described by Equations

dp dRy
A 4 =(B—C)gr +(N — M) RaBs, W=PR2—qRa (123, ABC, LMN, pqr)
He established that for condition
A(M—N)+B(N—L)+C(L——M)=O (3.4)

this problem has a complete solution because the fourth integral is deter-
mined as

BC . CA AB
Ap? -+ Bg?2 4 Cr2 — TLRﬁ -5 MR22 — < N R3? = const

which permits to find the quadratures.

Apparently, Equation (3.3) follows from equations or Clebsch's problem if
one sets in the latter L —pA M =p?B and N =p?C (condition (3.4) 1is
satisfied). In this connezstion the fourth integral takes the form

A%p? + B¢® + C*r* — p“‘ (BCy,® + CAY* ABys?) = const (3.5)

Somewhat later this integral was found by Tisserand [6].

Equation (3.3) and integral (3.5) 1s sometimes without foundation connec-
ted with the name of Brun who arrived at these equations much later than
Clebsch while examining a quite instructively formulated problem of dynamics
of a solid body [7].

Although quadratures to which Equations (3.3), (0.2) [8 and 9] are reduced,
give general analytical solutions of the problem,they turn out to be quite
clumsy. Kinematic interpretation of the motion of the body is found for
this problem only under the condition that the constant of intergration of
areas is equal to zero [9]. Examination of particular cases of this problem
is therefore of interest such as for example the solutlion of Steklov with
line integrals [10].

We obtain a simple particular solution of Equations (3.3), (O. 2) from the
solution indicated in the previous Section for conditions (3.1), (3.2).
Referring this solution to new axes introduced in the same Section, we obtain

(B+C)p=p{(B—C)n+tsh, ¢=pn,, r=—pn
(B"+ C')1e* = B’ 4+ h— s11 — B8, (B+C)15?=C —h-+4su—C1n?
dyy
ai = Are'rs

In this case Yy together with the other variables of the problem, are
elliptic functions”of time.

Apparently, the solution shown here 1s also & solution of the problem of
Clebsch.

The particular case of this solution obtained for g = 0 and v = 3¢
was examined by Arkhangel'skii [11]. With new axes the condition y = 2
corresponds to B‘= 0’.

&, We shall show one more solution which 1s of interest because of its
connection with investigations of Zhukovskil [2] and Volterra [12). This
solution is characterized by the presence of three relationships

N1=mp-+m (par, 123) (4.1)
We substitute (4.1) into (0.3), (0.2)
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d
ASE = (B—C) (1 — ptnans) qr + ke + exnal — p2 (B — C) noma] r —
— [As 4 egnel — p2 (C — B) nama] ¢ + eamsl’ —eymelU — p2 (B~ C) mamy {4.2)

m % = (n2 — ns) qr + mar — msq (ADC, par, 123)
These six relationships of determining P , ¢ and r are compatible if
(B —C) (1 —wnans) = (m — ny) Am™!, k2 4- eansl — P (B — C) namy = madny™!
A3+ eanal — U2 (C — B)mgmy = madng ™1, eonal — egmal’ = U2 (I3 — C) mgms
(ABC, 123)

From this we find

e — 1+ As )‘/: sel {Asfj) 43
AT R (1 0m@E) 0 MTE T REEFOE L) G

if parameters of the system are connected by the following relationships:
[ el (2 4 As) ((1 -+ Bs){t - Csy\': (ABC .
'TT2FBFOs U (I FAs)pe ) (123) (4.4)

Here & 1is an arbitrary parameter,

5. We designate 1 +4s , 1 +5s and 1+ Cs by a , b and o , res-
pectlvely, and introduce nondimensional varisbles relating the components of
angularavelocity to the quantity s} abc/p?; the quantities v,, vy, and v,
to e/u®, and the variable ¢ to the quantity (s V abe /p2)t.

We substitute (4,3) , (4.4%) into (4.2 § assing to nondimensional
verlables 1ndicate(ad ’ ) ( b )» P ne nese

dp ear' el .
a g =(b—c)gr+ a5 ? " age" {abe, pgr, 123) (5.1)

el
71 ==ap — m {abe, pgr, 123) (5.2)

Equations (5.1) colncide in form with equations of Zhukovskii [2] in the
problem of inertlal motion of a body with fluid filled cavity. Two integrals
are known of Equations (5.1) and (5.2)

ap?-+bgtd-crt=nh (5.3)
( eI’ )2 ( *ezF 2 ( esl’ 2 _Ei
Ww—pig) + bq“‘c+a) +er— a+b) =g
and, consequently, the dependence of p, ¢ and r on ¢ 1is determined by
quadratures [12] ,after that the dependence of the a.n%le of nutation and
om

characteristic rotation on t me 18 established fr 5.2), For determination
of the precession angle one additlional quadrature is required.

Quadratures to which Volterra reduced Equations (5.1) are complicated in
the general case, The problem is simplified if one of the quantities e,
is assumed to be equal to gero.

Let ¢y;= 0 . Eliminating P from (5.3) we obtain
[g—el /(c+a)(b—a)]* [r—el [{atb)(c—a)?
Hib{b— q) + Hicle—a) =
nt ae®l’? aes*l'? \
(H =7 —eh+ e ey t a1 bR —a)
While satisfying relationship (5.4) we introduce a new variable ¢ such

that
=el [{c+a)(b—a)+ VH/b(b—a)coss

1 (5.4)

o B (5.5)
r=el /{a4- D) {c —a)+ .'l/ Hjc{r —4)sins
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(1f the signs of denominators in (5.4) are different, then instead of trigo-
nometric functions in {5.5) hyperbolic functions of ¢ appear). From (5.3},
(5.5) we have

ap? =h—bex2 (et aP (b— ) —cesT2f (a + b} (¢ — a)? —

2besl ( H )]/2 2cesl ( H s . -
TEF =2 o0 —=a) COSG"‘(a—{—b)(c—a) clc—a) ) sing —  (5.6)
H H
— g o8t — - sin®s

Substituting (5.5), (5.6) into (5.1) we conclude that o 1is an elliptie
function of time.

The solution has an even simpler form in the case ée,= 4= 0 (and, con-
sequently, ‘z,= 1). Equations (5.3) give

bb—cygt= Q-+ 2aTp b+ )t 4 a (¢ — a) p*
cb—e)rP=R —2alp(b+ct—a(d—a)pt
Constants ¢ and # are introduced instead of » and K°
Q=K —he —T*{b+ )77 R=—r4+h-+T20+4

The first equation of (5.1) determines p &s an elliptic function of
time

¥

S a Vicdp

V{Q +2aTp (6 +c)? 4 alc—a) p2} [R—2aTp (b +c) 1 — a{b—a} p?

Po
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